Comparative effects of methylmercury on parallel-fiber and climbing-fiber responses of rat cerebellar slices.

نویسندگان

  • Y Yuan
  • W D Atchison
چکیده

The environmental neurotoxicant methylmercury (MeHg) causes profound disruption of cerebellar function. Previous studies have shown that acute exposure to MeHg impairs synaptic transmission in both the peripheral and central nervous systems. However, the effects of MeHg on cerebellar synaptic function have never been examined. In the present study, effects of acute exposure to MeHg on synaptic transmission between parallel fibers or climbing fibers and Purkinje cells were compared in 300- to 350-microm cerebellar slices by using extracellular and intracellular microelectrode-recording techniques. Field potentials of parallel-fiber volleys (PFVs) and the associated postsynaptic responses (PSRs) were recorded in the molecular layer by stimulating the parallel fibers in transverse cerebellar slices. The climbing-fiber responses were also recorded in the molecular layer by stimulating white matter in sagittal cerebellar slices. At 20, 100, and 500 microM, MeHg reduced the amplitude of both PFVs and the associated PSRs to complete block, however, it blocked PSRs more rapidly than PFVs. MeHg also decreased the amplitudes of climbing-fiber responses to complete block. For all responses, an initial increase in amplitude preceded MeHg-induced suppression. Intracellular recordings of excitatory postsynaptic potentials of Purkinje cells were compared before and after MeHg. At 100 microM and 20 microM, MeHg blocked the Na+-dependent, fast somatic spikes and Ca++-dependent, slow dendritic spike bursts. MeHg also hyperpolarized and then depolarized Purkinje cell membranes, suppressed current conduction from parallel fibers or climbing fibers to dendrites of Purkinje cells, and blocked synaptically activated local responses. MeHg switched the pattern of repetitive firing of Purkinje cells generated spontaneously or by depolarizing current injection at Purkinje cell soma from predominantly Na+-dependent, fast somatic spikes to predominantly Ca++-dependent, low amplitude, slow dendritic spike bursts. Thus, acute exposure to MeHg causes a complex pattern of effects on cerebellar synaptic transmission, with apparent actions on both neuronal excitability and chemical synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of cGMP breakdown promotes the induction of cerebellar long-term depression.

The effects of the nonspecific cyclic nucleotide inhibitors 1-methyl-3-isobutylxanthine (IBMX) and dipyridamole, and the cGMP-specific phosphodiesterase inhibitor Zaprinast were studied on parallel fiber-Purkinje cell synaptic responses in rat cerebellar slices. Bath application of all three compounds, at concentrations shown to inhibit cGMP breakdown, led to stable and robust long-term depress...

متن کامل

Ketamine and xylazine depress sensory-evoked parallel fiber and climbing fiber responses.

The last few years have seen an increase in the variety of in vivo experiments used for studying cerebellar physiological mechanisms. A combination of ketamine and xylazine has become a particularly popular form of anesthesia. However, because nonanesthetized control conditions are lacking in these experiments, so far there has been no evaluation of the effects of these drugs on the physiologic...

متن کامل

Parallel fiber and climbing fiber responses in rat cerebellar cortical neurons in vivo

Over the last few years we have seen a rapidly increasing interest in the functions of the inhibitory interneurons of the cerebellar cortex. However, we still have very limited knowledge about their physiological properties in vivo. The present study provides the first description of their spontaneous firing properties and their responses to synaptic inputs under non-anesthetized conditions in ...

متن کامل

Climbing fiber discharge regulates cerebellar functions by controlling the intrinsic characteristics of purkinje cell output.

The contribution of Purkinje cells to cerebellar motor coordination and learning is determined in part by the chronic and acute effects of climbing fiber (CF) afferents. Whereas the chronic effects of CF discharge, such as the depression of conjunctive parallel fiber (PF) inputs, are well established, the acute cellular functions of CF discharge remain incompletely understood. In rat cerebellar...

متن کامل

Time window control: a model for cerebellar function based on synchronization, reverberation, and time slicing.

We present a new hypothesis of cerebellar function that is based on synchronization, delayed reverberation, and time windows for triggering spikes. Our model suggests that granule cells admit mossy fiber activity to the parallel fibers only if the Golgi cells are firing synchronously and if the mossy-fiber spikes arrive within short and well-defined time windows. The concept of time window cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 288 3  شماره 

صفحات  -

تاریخ انتشار 1999